Beschreibung
This book provides a conceptual understanding of deep learning algorithms. The book consists of the four parts: foundations, deep machine learning, deep neural networks, and textual deep learning. The first part provides traditional supervised learning, traditional unsupervised learning, and ensemble learning, as the preparation for studying deep learning algorithms. The second part deals with modification of existing machine learning algorithms into deep learning algorithms. The books third part deals with deep neural networks, such as Multiple Perceptron, Recurrent Networks, Restricted Boltzmann Machine, and Convolutionary Neural Networks. The last part provides deep learning techniques that are specialized for text mining tasks. The book is relevant for researchers, academics, students, and professionals in machine learning.
Autorenportrait
The author, Taeho Jo, is president and founder of Alpha Lab AI. He received Bachelor, Master, and PhD degree, from Korea University in 1994, from Pohang University in 1997, and from University of Ottawa, 2006. As his research achievements, since 1996, he has published more than 200 research papers, and his research interests are text mining, machine learning, neural networks, and information retrieval. He has awarded three times in the world-wide biography, Marquis whos who in the World, in 2016, 2018, and 2019, and is granted the noble title, Duke from United Kingdom, in August 2018. He previously published two books, titled, Text Mining: Concept, Implementation, and Big Data Challenge and titled Machine Learning Foundations: Supervised, Unsupervised, and Advanced Learning.
Inhalt
Introduction.- Part I. Foundation.- Supervised Learning.- Unsupervised Learning.- Ensemble Learning.- Part II. Deep Machine Learning.- Deep K Nearest Neighbor.- Deep Probabilistic Learning.- Deep Decision Tree.- Deep SVM.- Part III. Deep Neural Networks.- Multiple Layer Perceptron.- Recurrent Networks.- Restricted Boltzmann Machine.- Convolutionary Neural Networks.- Part IV. Textual Deep Learning.- Index Expansion.- Text Summarization.- Textual Deep Operations.- Convolutionary Text Classifier.- Conclusion.
Informationen zu E-Books
„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.