EUROSHOCK - Drag Reduction by Passive Shock Control
Results of the Project EUROSHOCK, AER2-CT92-0049 Supported by the European Union, 1993 - 1995, Notes on Numerical Fluid Mechanics 56
Erschienen am
14.05.2012, 1. Auflage 1997
Bibliografische Daten
ISBN/EAN: 9783322907134
Sprache: Englisch
Umfang: xvii, 414 S., 66 s/w Illustr., 414 p. 66 illus.
Einband: kartoniertes Buch
Beschreibung
This volume contains the description of an EC-sponsered program to study all relevant aspects of shock/ boundary-layer interaction control, the latter designed to improve aircraft performance at design (cruise) and off-design conditions. The work being presented includes a discussion of basic control experiments and the corresponding physical modeling, to account for shock control and a discussion of the airfoil experiments conducted for code validation and control assessment, in conjunction with the basic experiments and computations. The contents is comprised of a section giving a broad overview of the research carried out here and more detailed individual contributions by the participants in the research. Der Band enthält den Abschlußbericht eines von EU geförderten Projekts EUROSHOCK, das alle relevanten Aspekte der Kontrolle von Stoßfronten und Grenzschichten (wichtig z.B. für die Verbesserung der Flugeigenschaften von Fluzeugen) untersuchte. Neben einer ausführlichen Diskussion der grundlegenden Kontrollexperimente und der zugrundeliegenden Modellierung werden auch die Versuche an Tragflächen beschrieben, die zur Validierung von Modellrechnungen durchgeführt werden. Darüber hinaus enthält der Band auch die detaillierten Ergebnisse der Teilnehmer an dem Forschungsprogramm.
Produktsicherheitsverordnung
Hersteller: Springer Vieweg in Springer Science + Business Media
[email protected]Abraham-Lincoln-Straße 46
DE 65189 Wiesbaden
Autorenportrait
InhaltsangabeA. Synopsis of the Project EUROSHOCK.- 1 Introduction.- 2 Basic Experiments and Physical Modeling.- 2.1 Two-dimensional Shock Control.- 2.1.1 Test set-up for the basic experiments.- 2.1.2 The perforated plates.- 2.1.3 Effect of plate geometry on shock control effectiveness.- 2.1.4 Boundary layer development over the cavity region.- 2.1.5 Assessment of turbulence models and shock control laws.- 2.2 Three-dimensional Shock Control.- 2.2.1 Experimental arrangement and procedure.- 2.2.2 Analysis of experimental results.- 2.2.3 Numerical simulation of the interaction.- 2.3 Conclusion and Future Work.- 3 Extension of Numerical Methods and Preliminary Control Assessment.- 3.1 Basic Numerical Methods.- 3.2 Pre-computations without Control.- 3.2.1 Steady flow pre-computations for the airfoil DA LVA-1A.- 3.2.2 Unsteady flow pre-computations.- 3.3 Extension of the Numerical Codes to Shock Control.- 3.4 Computational Results for Airfoil Flow with Control.- 3.4.1 Airfoil DRA 2303 - steady flow conditions.- 3.4.2 Airfoil DRA 2303 - unsteady flow conditions.- 3.4.3 Airfoil DA LVA-1A with and without control.- 3.4.4 Airfoil VA-2 with passive and active control.- 3.5 Conclusion and Future Work.- 4 Airfoil Tests with and without Control.- 4.1 Experimental Program.- 4.2 Experiments with the Airfoil DA LVA-1A.- 4.2.1 Airfoil characteristics and wind tunnel model.- 4.2.2 Wind tunnel characteristics.- 4.2.3 Discussion of T2 results.- 4.2.4 Discussion of KRG results.- 4.3 Experiments with the Airfoil DRA 2303.- 4.3.1 Airfoil characteristics and wind tunnel model.- 4.3.2 Wind tunnel characteristics.- 4.3.3 Discussion of steady results.- 4.3.4 Control effect on buffet.- 4.4 Experiments with the Airfoil VA-2.- 4.4.1 Airfoil characteristics and wind tunnel model.- 4.4.2 Wind tunnel characteristics.- 4.4.3 Comparison of present and earlier results.- 4.4.4 Effect of passive and active control.- 4.5 Conclusion and Future Work.- 5 Assessment of Shock Control - A Summary.- 6 Overall Conclusion and Future Work.- 7 References.- B Individual Contribution.- 8 Introduction to the Individual Contributions.- 9 Basic Study of Passive Control Applied to a Two-dimensional Transonic Interaction.- 9.1 Introduction.- 9.2 Experimental Conditions.- 9.2.1 Test set-up arrangement.- 9.2.2 Techniques of investigation and data processing.- 9.2.3 Configurations tested.- 9.3 Experimental Results.- 9.3.1 Flow visualizations.- 9.3.2 Surface pressure distributions.- 9.3.3 Mean flow field properties.- 9.3.4 Turbulent field properties.- 9.3.5 Total drag coefficient in the control region.- 9.3.6 Perforated plates excrescence drag.- 9.4 Theoretical Study.- 9.4.1 Numerical approach.- 9.4.2 Surface pressure distributions.- 9.4.3 Transpiration velocity distributions.- 9.5 Conclusion.- 9.6 References.- 10 Passive Control of Shock Wave - Boundary Layer Interaction and Porous Plate Transpiration Flow.- 10.1 Introduction.- 10.2 Porous Plate Flow.- 10.2.1 Measurements.- 10.2.2 Effective flow within a hole and pressure drop through the porous plate.- 10.2.3 Implementation of the porous plate flow model.- 10.3 Experimental Investigation of Shock Boundary Layer Interaction with Passive Control.- 10.3.1 Introduction.- 10.3.2 Mach number at the wall.- 10.3.3 Boundary layer profiles without passive control.- 10.3.4 Passive control effect.- 10.4 Numerical Simulation of SBLIC.- 10.4.1 Numerical code.- 10.4.2 Results.- 10.5 References.- 11 An Investigation of Passive Control Applied to Swept Shock-Wave/Boundary Layer Interactions.- 11.1 Introduction.- 11.2 Experimental Apparatus.- 11.3 Computational Method.- 11.4 Results and Discussion.- 11.4.1 Interaction without passive control.- 11.4.2 Interaction with passive control.- 11.5 Conclusions.- 11.6 References.- 12 Numerical Investigation of the Passive Shock Control on Transonic Airfoils Through an Euler/Boundary-Layer Coupling Technique.- 12.1 Introduction.- 12.2 Extension of the EUBL2D Method to Passive Shock Control Calculations.- 12.3 Calculation of t