Beschreibung
In the history of computing hardware,Moores law, named after Intel co-founder Gordon E. Moore, describes a long-termtrend, whereby the number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years [1]. Because the number of transistors is crucial for computing performance, significant performance gains could be achieved simply through complementary metal-oxide-semiconductor (CMOS) transistor downscaling. AlthoughMoores law, which was mentioned for the first time in 1965, turned out to persist for almost five decades, the nano era poses significant problems to the concept of downscaling [2]. Upon approaching the size of atoms, quantumeffects, such as quantum tunneling, pose fundamental barriers to the trend. Furthermore, the conventional computing paradigm based on the Von-Neumann architecture and binary logic becomes increasingly inefficient considering the growing complexity of todays computational tasks. Hence, new computational paradigms and alternative information processing architectures must be explored to extend the capabilities of future information technology beyond digital logic. A fantastic example for such an alternative information processing architecture is the human brain. The brain provides superior computational features such as ultrahigh density of processing units, low energy consumption per computational event, ultrahigh parallelism in computational execution, extremely flexible plasticity of connections between processing units and fault-tolerant computing provided by a huge number of computational entities. Compared to todays programmable computers, biological systems are six to nine orders of magnitude more efficient in complex environments [3]. For instance: simulating five seconds of brain activity takes IBMs state-of-the-art supercomputer Blue Gene a hundred times as long, i.e. 500 s, during which it consumes 1.4 MWof power, whereas the power dissipation in the human central nervous system is of the order of 10W[4, 5]. Thus, it is not only extremely interesting but in terms of computational progress also highly desirable to understand how information is processed in the human brain. The conceptual idea developed within the framework of this thesis tries to contribute to this intention. In contrast to most recent research dealing with the simulation and emulation of specific connections between nerve cells [512], the work of this thesis focuses on investigating, on []
Informationen zu E-Books
„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.