0

Path Integrals On Group Manifolds, Representation-independent Propagators For General Lie Groups

eBook

Erschienen am 31.03.1998, 1. Auflage 1998
29,95 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9789814496551
Sprache: Englisch
Umfang: 232 S.
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

The quantization of physical systems moving on group and symmetric spaces has been an area of active research over the past three decades. This book shows that it is possible to introduce a representation-independent propagator for a real, separable, connected and simply connected Lie group with irreducible, square-integrable representations. For a given set of kinematical variables this propagator is a single generalized function independent of any particular choice of fiducial vector and the irreducible representations of the Lie group generated by these kinematical variables, which nonetheless correctly propagates each element of a continuous representation based on the coherent states associated with these kinematical variables.Furthermore, the book shows that it is possible to construct regularized lattice phase space path integrals for a real, separable, connected and simply connected Lie group with irreducible, square-integrable representations, and although the configuration space is in general a multidimensional curved manifold, it is shown that the resulting lattice phase space path integral has the form of a lattice phase space path integral on a multidimensional flat manifold. Hence, a novel and extremely natural phase space path integral quantization is obtained for general physical systems whose kinematical variables are the generators of a connected and simply connected Lie group. This novel phase space path integral quantization is (a) exact, (b) more general than, and (c) free from the limitations of the previously considered path integral quantizations of free physical systems moving on group manifolds.To illustrate the general theory, a representation-independent propagator is explicitly constructed for SU(2) and the affine group.

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.

Weitere Artikel vom Autor "Wolfgang Tome, Tome"

Alle Artikel anzeigen