Computational Number Theory
eBook - Proceedings of the Colloquium on Computational Number Theory held at Kossuth Lajos University, Debrecen (Hungary), September 4-9,1989
Erschienen am
01.06.2011, 1. Auflage 2011
Inhalt
I-IV -- Preface -- List of contributors -- Table of contents -- On the construction of primitive elements and primitive normal bases in a finite field -- A numerical method for the determination of the cyclotomic polynomial coefficients -- Number systems -- Fast converging series representations of real numbers and their implementations in digital processing -- On a polynomial transformation and its application to the construction of a public key cryptosystem -- Number-theoretic transforms and a theorem of Sylvester - Kronecker - Zsigmondy -- A probabilistic class group and regulator algorithm and its implementation -- Primeproducing quadratic polynomials and class numbers of quadratic orders -- Applications of a new class number two criterion for real quadratic fields -- On a solution of a class number two problem for a family of real quadratic fields -- Cubic number fields with exceptional units -- Enumeration of totally complex quartic fields of small discriminant -- Class number computation by cyclotomic or elliptic units -- Computing fundamental units from independent units -- A note on index divisors -- Computation of independent units in number fields by a combination of the methods of Buchmann/Pethö and Pohst / Zassenhaus -- Hecke actions on classes of ternary quadratic forms -- Computation of singular moduli by multi-valued modular equations -- Congruent numbers and elliptic curves -- The rank of elliptic curves upon quadratic extension -- On the resolution of some diophantine equations -- Index form equations in cubic number fields -- On the practical solution of the Thue-Mahler equation -- Some results on Thue equations and Thue-Mahler equations -- On the solution of the diophantine equation Gn = P(x) with sieve algorithm -- On Thue equations associated with certain quartic number fields -- KANT - a tool for computations in algebraic number fields -- SIMATH - a computer algebra system
Informationen zu E-Books
„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.